Большие данные или Big Data — что это?

Профессии Big Data: кто здесь работает и как сюда попасть

Большие данные или Big Data — что это?

Наука о данных ведет свою историю с 1966 года. Именно тогда в Париже появился Комитет по данным для науки и техники при Международном научном совете.

Однако, долгое время выражение «data science» можно было услышать только в узких кругах статистиков и ученых.

Лишь в начале 2000-х термин стал общепризнанным в Америке и Европе, а с появлением и распространением хайпа вокруг Big Data традиционная наука о данных получила новое дыхание.

Внезапно аналитики стали нужны всем: бизнесу и государству, интернету и сельскому хозяйству. В 2011 году McKinsey подливает масла в огонь: по их предсказаниям, к 2018 году только в США потребуется больше 400 тысяч аналитиков данных. Где же их столько взять? В 2013 году университеты запускают магистратуру по data science, а бизнес-школы плодят курсы для Big Data специалистов.

В России происходит все то же самое, но чуть медленнее. На сегодняшний день количество вакансий, связанных с big data, на hh.ru переваливает за тысячу.

При этом, отрасль остается новой и загадочной: большие данные притягивают специалистов и одновременно отпугивают. Сегодня будем развеивать страхи и изгонять жаждущих легких денег.

Если вы до сих пор думаете, что работа с big data – это нечто, связанное со сверхспособностями и единорогами, приготовьтесь к погружению в реальность.

Big data профессии по полочкам

Добро пожаловать в отдел социальной аналитики Eastwind. Здесь наши коллеги создают и развивают платформу Social Analytics. Этот продукт помогает телеком-операторам и бизнесу собирать сырые неструктурированные данные и преобразовывать их в инсайты о клиентах. За удобными юзер интерфейсами и результатами кейсов, скрывается большой труд ребят из отдела социальной аналитики.

Заметим, что в зависимости от страны, компании и специфики бизнеса профессии подобного отдела могут называться по-разному. Некоторые (больше принято на зарубежном рынке) дробят функции big data специалистов и получают узконаправленных экспертов. Но в общем, все профессии, тесно связанные с Big Data, можно разделить на два основных направления: анализ данных и разработка.

В соответствующих рабочих группах Eastwind мы попросили рассказать: в чем суть работы аналитиков и разработчиков отдела, какие технологии они используют, с каким бэкграундом люди обычно приходят в big data и что нужно специалистам для успеха в этой индустрии.

Суть работы:

– Человек продуцирует много фиксируемых событий. Например, у операторов это звонки и трафик, у банков – транзакции, в ритейле – посещения и покупки.

Мы выявляем закономерности в этих данных, чтобы использовать их для бизнеса, – рассказывает Андрей Плющенко, руководитель группы анализа данных в Eastwind. – Работаем с сырой информационной историей.

Из необработанных данных нам нужно убрать мусор и оставить то, что позволит лучше охарактеризовать людей, предсказать их поведение. Все это помогает бизнесу понять: какой товар или услуга вероятнее всего заинтересуют клиента.

А также: когда это произойдет, стоит ли предоставлять ему кредит доверия и так далее. В нашей группе мы строим поведенческие модели, тестируем их и настраиваем алгоритмы machine learning – все кодим на python.

Бэкграунд и технологии:

– Обычно в анализ больших данных приходят математики. Я сам математик, –продолжает Андрей.

– Также нужно разбираться в программировании, понимать, что такое big data в принципе, а главное – быть творческим человеком. Нам ведь постоянно приходится что-то придумывать, генерировать идеи, искать инсайты.

Если говорить о технологиях, то для работы достаточно знать python, что-нибудь о распределенных вычислениях и устройстве кластеров данных.

– Я пришла в big data из java-разработки, – делится Ольга Анненкова, группа анализа данных Eastwind. – Просто плавно перешла из одной группы в другую, вместе со своими задачами. Сейчас сама разработка стала более аналитической.

Сложность нашей работы в том, что постоянно появляются новые продукты, нам нужно очень быстро внедрять их и разбираться, как они работают, несмотря на баги. Интересно, потому что мы работаем с настоящими конфиденциальными данными и можем видеть результат своих вычислений и верность предсказаний в реальной жизни.

Аналитика big data – это труд программиста, математика и исследователя в одной специальности.

Важно для успеха:

– Чтобы работать в анализе больших данных, нужно иметь скилы из разных областей, – добавляет Михаил Чернышев, группа анализа данных Eastwind. – Уметь делать визуализации, обладать фантазией и терпением. Не факт, что модель, которую ты придумаешь, сработает с первого раза.

– Самое сложное и начинается, когда тебе нужно тюнинговать созданную модель, – подтверждает Дмитрий Журавлев, группа анализа данных Eastwind. – Для создания и улучшения метрик важно с разных сторон смотреть на проблему.

– Главные компетенции рождаются при решении промышленных задач. Нельзя пройти курсы, почитать теорию, вдохновиться модой и стать успешным big data аналитиком, – объясняет Андрей Плющенко.

– С сырой историей работать всегда сложнее, чем с готовыми фичами, которые дают на конкурсах. В каждой компании – свои специфические задачи, к решению которых нужно подходить индивидуально. Нужно приготовиться, что в работе с big data нет шаблона.

Поэтому, после освоения базы, вам придется постоянно совершенствоваться. Но будет интересно.

Профессии около big data

Рассказывая о специальностях отрасли, нельзя не упомянуть некоторые «вспомогательные» профессии. Это люди, которые напрямую не работают с большими данными, но тесно связаны с развитием многих аналитических платформ. Это тот случай, когда вы не математик и не технарь, но все-таки можете похвастаться, что крутитесь в сфере Big data. 😉

Дизайнер интерфейсов. Этот человек упаковывает все сложные вычисления и технологии в простую форму.

Особенность создания интерфейсов аналитических платформ – большое количество параметров данных.

Дизайнер делает так, чтобы пользователь по ту сторону экрана мог легко во всем разобраться и запускал собственные исследования без глубокого погружения в предметную область big data.

«Для создания интерфейсов к аналитическим платформам нужно разбираться в web-разработке, UX-дизайне и обладать чувством прекрасного, – объясняет Александр Иноземцев, руководитель группы веб-интерфейсов в Eastwind. – Нужно уметь поставить себя на место человека, который будет пользоваться интерфейсом, и сделать процесс управления максимально удобным и простым для него».

Продакт-менеджер. Этот человек продвигает аналитическую платформу в живой бизнес-среде: участвует во внедрении, развивает систему по потребностям заказчика и требованиям рынка. Он должен хорошо разбираться в продукте и быть связующим звеном между разработчиками и компанией.

«Для нашего технического отдела – я менеджер, который работает с клиентом. А клиенты часто считают меня технарем, – рассказывает Александр Павлов, менеджер продукта Eastwind Social Analytics. – Это отражает особенность профессии менеджера big data продукта: быть в равной степени погруженным в коммерческие нужды и технические возможности, понимать логику исследований данных и быть первым объективным тестировщиком UI».

Где учиться, чтобы взяли на работу

Если вы не передумали погружаться в Big Data, и готовы разбираться в теме: поищите подходящие программы на Coursera, послушайте, что рассказывают в Школе анализа данных от Яндекс и рассмотрите курсы от Open Data Science.

Также сейчас ведут онлайн-курсы многие зарубежные университеты: например, введение в big data от Калифорнийского Berkeley или введение в data science от Массачусетского института технологий. Этот вариант подойдет, если ваш английский выше технического.

Есть магистерские программы и в российских ВУЗах.

«Мы берем людей после таких курсов. Их большой плюс в том, что они уже понимают специфику отрасли, – говорит Андрей Плющенко, руководитель группы анализа данных в Eastwind. – На собеседовании я обычно задаю базовые вопросы по machine learning. Например, что такое классификация, регрессия и кластеризация? Или: что сделать, чтобы не переобучиться? Есть и вопросы с подвохом, но даже если человек на них не ответил – не значит, что его не возьмут. Намного важнее, чтобы специалист понимал, что сейчас он на старте, и был готов к прокачке.Почему глупо требовать большой опыт в этой области? На Урале сильная математическая и программистская школа, а вот применить свои знания ребятам, которые решили стать аналитиками данных – почти негде. Даже Яндекс сократил своих местных дата сайнтистов. Поэтому многие уезжают в Москву, более амбициозные – за рубеж. В Екатеринбурге мы – одни из немногих, у кого есть полноценный аналитический отдел».

Big data – работа «что надо»?

Мы выяснили, что в отрасли больших данных нет ничего магического и, при желании, – туда не так трудно попасть, как кажется. Потребуются лишь способности к математике, логике и программированию.

А еще умение творить, видеть задачи под разным углом и понимать людей и бизнес одновременно. Ну и в идеале – нужно быть терпеливым, настойчивым, всегда готовым к новому и проходить сквозь стены.

Ой, последнее – лишнее. 🙂

В общем, берем свои слова насчет «не так трудно» обратно. Уровень сложности зависит исключительно от ваших индивидуальных способностей и желаний. Примеряйте на себя профессии, проверяйте свои скилы и ищите то, что вам подходит. Нашли? Тогда спасибо за внимание и добро пожаловать в Big Data

Источник: https://spark.ru/startup/eastwind-company/blog/33965/professii-big-data-kto-zdes-rabotaet-i-kak-syuda-popast

Big Data: что это и как работать с большими данными | Блог Mail.Ru Cloud Solutions

Большие данные или Big Data — что это?

Big Data — как подростковые отношения в средней школе. Все ими хвастаются, но на самом деле мало кто знает, что это такое. Расскажем, как понять, что перед вами большие данные, и начать с ними работать.

Проблема в названии

На русский язык Big Data переводится как «большие данные». Но большие — это сколько? Таблица в Экселе на 500 000 строк — это много? Текст на 2 мегабайта — много? А распечатки графиков температуры всех метеостанций Архангельской области — много или ещё недостаточно?

Тут многие айтишники скажут, что эти примеры представляют собой довольно внушительное количество информации. Действительно, с такой точки зрения, все перечисленное — большие данные. Но что вы скажете про таблицу в Экселе на миллиард строк? Это тоже большие данные — и куда побольше тех!

На интуитивном уровне специалисты, далекие от Big Data, привыкли называть большими данными любой объем информации, который сложно удержать в голове и/или который занимает много места. И такое интуитивное определение, конечно же, неправильно.

Как понять, что перед вами действительно Big Data

Профессора американских университетов и айтишники топовых американских компаний (места, где зародилось понятие «большие данные») выделяют три критерия, по которым можно понять, что перед вами Big Data.

  1. Данные должны быть в цифровом виде. Это должны быть биты и байты. Стопка книг в национальной библиотеке — это тоже массив информации, но к Big Data никак не относится.
  2. Данные должны поступать в объективно больших объемах и накапливаться с большой скоростью. Например, база заказов интернет-магазина по продаже колясок может быть большой, например, 10 миллионов заказов за 20 лет, но пополняется она со скоростью 100 заказов в сутки — это не большие данные. Фильм в высоком качестве может занимать десятки гигов, но со временем его размер не растет — это тоже не большие данные. А вот записи показателей пары сенсоров в двигателе Боинга, поступающие в количестве несколько гигабайт в час и загружаемые на диагностический сервер производителя авиатехники, — это уже самая настоящая Big Data.
  3. Слабая структурированность и упорядоченность данных. Заказы в онлайн-магазине упорядочены, из них легко извлечь дополнительные статистические параметры (средний чек, самые популярные товары), полезные для принятия решений. Поэтому они — не Big Data. Показания датчиков температуры с корпуса самолета, записанные за последние 6 месяцев, — информация, в которой есть польза, но не очень понятно, как ее извлечь. Можно, конечно, рассчитать средние значения температуры за бортом самолета за полгода, но какой в этом смысл? А если погрузиться в анализ этих данных глубоко — можно вытащить много неочевидной информации. Например, о длительности перелетов, скорости набора высоты, климатических условиях за бортом и т. д. Информация интересная и полезная, но трудноизвлекаемая, значит, это Big Data.

Итак, BigData — трудноанализируемая цифровая информация, накапливаемая со временем и поступающая к вам солидными порциями.

А мне это все зачем, напомните?

Когда в любом айти-проекте начинают работать с данными, в первую очередь анализируют наиболее очевидные, значимые и понятные показатели. Так, если речь идет об онлайн-торговле, в первую очередь смотрят на средние чеки заказов, топ продаж и объемы складских запасов. Когда речь идет о самолетах — смотрят скорость, высоту, расход топлива.

Сбор и анализ очевидных метрик позволяет вносить в систему простые и понятные корректировки. Такие улучшения практически сразу дают ощутимый результат. Это называется «сбор фруктов с нижних веток дерева».

По мере эволюции системы инженеры прорабатывают все видимые узкие места в проекте. После этого начинается стагнация продукта: для поиска новых путей развития нужно лезть выше, чтобы собрать плоды с более высоких веток. Инженеры и аналитики начинают собирать и анализировать косвенные данные, напрямую не связанные с основными метриками проектов.

Например, в онлайн-торговле можно собирать со страниц магазина данные о перемещении курсора (или пальца) по экрану. Или собирать данные с большего числа сенсоров самолета, например: число оборотов двигателя, состав топливно-воздушной смеси, забортную температуру и температуру выхлопа.

Эти данные напрямую не связаны с основными метриками IT-системы, но при правильном анализе могут рассказать много интересного о возможных точках оптимизации в проекте.

Работа с такими данными — как поиск нефти. Нужно пробовать разные места, применять различные стратегии поиска и извлечения скрытых ресурсов, спрятанных в данных.

Далеко не все попытки будут успешны, но в итоге находки могут принести массу выгоды.

Что нужно для работы с Big Data

  1. Готовьте много места. Данных будет немало, нужно быть готовыми где-то их хранить. Также информация может поступать с высокой скоростью, поэтому заранее смотрите, чтобы ширины входного канала и скорости дисков хватало для обработки входящего потока байтов.
  2. Готовьте больше серверов.

    Данные нужно не только хранить, но и как-то обрабатывать. Из-за больших объемов вам, скорее всего, придется разбивать информацию на порции и обрабатывать их параллельно на разных машинах. Для этого придется заранее озаботиться достаточным количеством железа для вычислений.

  3. Готовьте правильные инструменты. Айтишники много лет занимаются поиском крупиц золота в горах разнообразных больших данных. Для их расчетов создано много надежных, классных и быстрых инструментов, например: Hadoop, Spark и другие.

    Познакомьтесь с основными продуктами на рынке и выберите, что подойдет вам.

Подготовка инфраструктуры занимает много времени, поэтому лучше переложить ее на плечи профессиональных админов и присмотреться к облачным решениям по обработке Big Data.

В этом случае и диски, и серваки, и Hadoop со Spark вы получите в готовом виде — уже настроенном, оптимизированном, прогретом и ждущем ваших задач.

Дивный новый мир больших данных

Айтишники, ныряющие в мир больших данных, часто находят в его глубинах информацию, которая позже коренным образом меняет бизнес и уровень прибыли. А иногда Big Data может изменить видение продукта в целом. Копаться в больших данных всегда сложно, но очень интересно. Вкладывайте время и усилия в эту страну цифровых чудес — и ваш труд обязательно окупится!

Иллюстрация в шапке: af.wiktionary.org Источник: https://af.wiktionary.org/wiki/L%C3%AAer:Big_%26_Small_Pumkins.JPG

Источник: https://mcs.mail.ru/blog/big-data-vse-govoryat-no-malo-kto-shchupal/

Биг-дата что это такое? Простыми словами о Big-Data технологии

Большие данные или Big Data — что это?

Термин «Биг-Дата», возможно, сегодня уже узнаваем, но вокруг него все еще довольно много путаницы относительно того, что же он означает на самом деле.

По правде говоря, концепция постоянно развивается и пересматривается, поскольку она остается движущей силой многих продолжающихся волн цифрового преобразования, включая искусственный интеллект, науку о данных и Интернет вещей.

Но что же представляет собой технология Big-Data и как она меняет наш мир? Давайте попробуем разобраться объяснить суть технологии Биг-Даты и что она означает простыми словами.

Удивительный рост Биг-Даты

Все началось со «взрыва» в объеме данных, которые мы создали с самого начала цифровой эпохи. Это во многом связано с развитием компьютеров, Интернета и технологий, способных «выхватывать» данные из окружающего нас мира. Данные сами по себе не являются новым изобретением.

Еще до эпохи компьютеров и баз данных мы использовали бумажные записи транзакций, клиентские записи и архивные файлы, которые и являются данными. Компьютеры, в особенности электронные таблицы и базы данных, позволили нам легко и просто хранить и упорядочивать данные в больших масштабах.

Внезапно информация стала доступной при помощи одного щелчка мыши.

Тем не менее, мы прошли долгий путь от первоначальных таблиц и баз данных. Сегодня через каждые два дня мы создаем столько данных, сколько мы получили с самого начала вплоть до 2000 года. Правильно, через каждые два дня. И объем данных, которые мы создаем, продолжает стремительно расти; к 2020 году объем доступной цифровой информации возрастет примерно с 5 зеттабайтов до 20 зеттабайтов.

В настоящее время почти каждое действие, которое мы предпринимаем, оставляет свой след. Мы генерируем данные всякий раз, когда выходим в Интернет, когда переносим наши смартфоны, оборудованные поисковым модулем, когда разговариваем с нашими знакомыми через социальные сети или чаты и т.д.

К тому же, количество данных, сгенерированных машинным способом, также быстро растет. Данные генерируются и распространяются, когда наши «умные» домашние устройства обмениваются данными друг с другом или со своими домашними серверами.

Промышленное оборудование на заводах и фабриках все чаще оснащается датчиками, которые аккумулируют и передают данные.

Термин «Big-Data» относится к сбору всех этих данных и нашей способности использовать их в своих интересах в широком спектре областей, включая бизнес.

Как работает технология Big-Data?

Биг Дата работает по принципу: чем больше вы знаете о том или ином предмете или явлении, тем более достоверно вы сможете достичь нового понимания и предсказать, что произойдет в будущем.

В ходе сравнения большего количества точек данных возникают взаимосвязи, которые ранее были скрыты, и эти взаимосвязи позволяют нам учиться и принимать более взвешенные решения.

Чаще всего это делается с помощью процесса, который включает в себя построение моделей на основе данных, которые мы можем собрать, и дальнейший запуск имитации, в ходе которой каждый раз настраиваются значения точек данных и отслеживается то, как они влияют на наши результаты.

Этот процесс автоматизирован — современные технологии аналитики будут запускать миллионы этих симуляций, настраивая все возможные переменные до тех пор, пока не найдут модель — или идею — которые помогут решить проблему, над которой они работают.

Бил Гейтс висит над бумажным содержимым одного компакт диска

До недавнего времени данные были ограничены электронными таблицами или базами данных — и все было очень упорядочено и аккуратно. Все то, что нельзя было легко организовать в строки и столбцы, расценивалось как слишком сложное для работы и игнорировалось.

Однако прогресс в области хранения и аналитики означает, что мы можем фиксировать, хранить и обрабатывать большое количество данных различного типа.

В результате «данные» на сегодняшний день могут означать что угодно, начиная базами данных, и заканчивая фотографиями, видео, звукозаписями, письменными текстами и данными датчиков.

Чтобы понять все эти беспорядочные данные, проекты, имеющие в основе Биг Дату, зачастую используют ультрасовременную аналитику с привлечением искусственного интеллекта и компьютерного обучения.

Обучая вычислительные машины определять, что же представляют собой конкретные данные — например, посредством распознавания образов или обработки естественного языка – мы можем научить их определять модели гораздо быстрее и достовернее, чем мы сами.

Сейчас лучшее время для старта карьеры в области Data Science. В школе данных SkillFactory  стартует онлайн-курс, позволяющий освоить профессию Data Scientist с нуля.

Как используется Биг-Дата?

Этот постоянно увеличивающийся поток информации о данных датчиков, текстовых, ых, фото- и видеоданных означает, что теперь мы можем использовать данные теми способами, которые невозможно было представить еще несколько лет назад.

Это привносит революционные изменения в мир бизнеса едва ли не в каждой отрасли. Сегодня компании могут с невероятной точностью предсказать, какие конкретные категории клиентов захотят сделать приобретение, и когда.

Биг Дата также помогает компаниям выполнять свою деятельность намного эффективнее.

Даже вне сферы бизнеса проекты, связанные с Big-Data, уже помогают изменить наш мир различными путями:

  • Улучшая здравоохранение — медицина, управляемая данными, способна анализировать огромное количество медицинской информации и изображений для моделей, которые могут помочь обнаружить заболевание на ранней стадии и разработать новые лекарства.
  • Прогнозируя и реагируя на природные и техногенные катастрофы. Данные датчиков можно проанализировать, чтобы предсказать, где могут произойти землетрясения, а модели поведения человека дают подсказки, которые помогают организациям оказывать помощь выжившим. Технология Биг Даты также используется для отслеживания и защиты потока беженцев из зон военных действий по всему миру.
  • Предотвращая преступность. Полицейские силы все чаще используют стратегии, основанные на данных, которые включают их собственную разведывательную информацию и информацию из открытого доступа для более эффективного использования ресурсов и принятия сдерживающих мер там, где это необходимо.

Лучшие книги о технологии Big-Data

Проблемы с Big-Data

Биг Дата дает нам беспрецедентные идеи и возможности, но также поднимает проблемы и вопросы, которые необходимо решить:

  • Конфиденциальность данных – Big-Data, которую мы сегодня генерируем, содержит много информации о нашей личной жизни, на конфиденциальность которой мы имеем полное право. Все чаще и чаще нас просят найти баланс между количеством персональных данных, которые мы раскрываем, и удобством, которое предлагают приложения и услуги, основанные на использовании Биг Даты.
  • Защита данных — даже если мы решаем, что нас устраивает то, что у кого-то есть наши данные для определенной цели, можем ли мы доверять ему сохранность и безопасность наших данных?
  • Дискриминация данных — когда вся информация будет известна, станет ли приемлемой дискриминация людей на основе данных из их личной жизни? Мы уже используем оценки кредитоспособности, чтобы решить, кто может брать деньги, и страхование тоже в значительной степени зависит от данных. Нам стоит ожидать, что нас будут анализировать и оценивать более подробно, однако следует позаботиться о том, чтобы это не усложняло жизнь тех людей, которые располагают меньшими ресурсами и ограниченным доступом к информации.

Выполнение этих задач является важной составляющей Биг Даты, и их необходимо решать организациям, которые хотят использовать такие данные. Неспособность осуществить это может сделать бизнес уязвимым, причем не только с точки зрения его репутации, но также с юридической и финансовой стороны.

Глядя в будущее

Данные меняют наш мир и нашу жизнь небывалыми темпами. Если Big-Data способна на все это сегодня — просто представьте, на что она будет способна завтра. Объем доступных нам данных только увеличится, а технология аналитики станет еще более продвинутой.

Для бизнеса способность применять Биг Дату будет становиться все более решающей в ​​ближайшие годы. Только те компании, которые рассматривают данные как стратегический актив, выживут и будут процветать. Те же, кто игнорирует эту революцию, рискуют остаться позади.

Источник: https://clubshuttle.ru/tehnologiya-big-data-prostymi-slovami

Big Data: выдержка из 2000 страниц

Большие данные или Big Data — что это?

В свое время я услышал термин “Big Data” от Германа Грефа (глава Сбербанка). Мол, они сейчас у себя активно работают над внедрением, потому что это поможет им сократить время работы с каждым клиентом.

Второй раз я столкнулся с этим понятием в интернет-магазине клиента, над которым мы работали и увеличивали ассортимент с пары тысяч до пары десятков тысяч товарных позиций.

Третий раз, когда увидел, что в Yandex требуется аналитик big data. Тогда я решил поглубже разобраться в этой теме и заодно написать статью, которая расскажет что это за термин такой, который будоражит умы ТОП-менеджеров и интернет-пространство.

VVV или VVVVV

Обычно любую свою статью я начинаю с пояснения что же это за термин такой. Эта статья не станет исключением.

Однако, это вызвано прежде всего не желанием показать какой я умный, а тем, что тема по-настоящему сложная и требует тщательного пояснения.

К примеру, Вы можете почитать что такое big data в Википедии, ничего не понять, а потом вернуться в эту статью, чтобы все таки разобраться в определении и применимости для бизнеса. Итак, начнём с описания, а потом к примерам для бизнеса.

Big data это большие данные. Удивительно, да? Реально, с английского это переводится как “большие данные”. Но это определение, можно сказать, для чайников.

Важно. Технология big data это подход/метод обработки большего числа данных для получения новой информации, которые тяжело обработать обычными способами.

Данные могут быть как обработанными (структурированными), так и разрозненными (то есть неструктурированными).

Сам термин появился относительно недавно. В 2008 году в научном журнале этот подход предсказывался как нечто необходимое для работы с большим объемом информации, которая увеличивается в геометрической прогрессии.

К примеру, ежегодно информация в интернете, которую нужно хранить, ну и само собой обрабатывать, увеличивается на 40%. Еще раз. +40% каждый год появляется в интернете новой информации.

Если распечатанные документы понятны и способы обработки их тоже понятны (перенести в электронный вид, сшить в одну папку, пронумеровать), то что делать с информацией, которая представлена в совершенно других “носителях” и других объёмах:

  • интернет-документы;
  • блоги и социальные сети;
  • аудио/видео источники;
  • измерительные устройства;

Есть характеристики, которые позволяют отнести информацию и данные именно к big data.

То есть не все данные могут быть пригодны для аналитики. В этих характеристиках как раз и заложено ключевое понятие биг дата. Все они умещаются в три V.

  1. Объем (от англ. volume). Данные измеряются в величине физического объема “документа”, подлежащего анализу;
  2. Скорость (от англ. velocity). Данные не стоят в своем развитии, а постоянно прирастают, именно поэтому и требуется их быстрая обработка для получения результатов;
  3. Многообразие (от англ. variety). Данные могут быть не одноформатными. То есть могут быть разрозненными, структурированным или структурированными частично.

Однако, периодически к VVV добавляют и четвертую V (veracity — достоверность/правдоподобность данных) и даже пятую V ( в некоторых вариантах это – viability — жизнеспособность, в других же это – value — ценность).

Где-то я видел даже 7V, которые характеризуют данные, относящиеся к биг дата. Но на мой взгляд это из серии Маркетинг микса 4P (где периодически добавляются P, хотя для понимания достаточно начальных 4-х).

Кому же это надо?

Встает логичный вопрос, как можно использовать информацию (если что, биг дата это сотни и тысячи терабайт)? Даже не так.

Вот есть информация. Так для чего придумали тогда биг дата? Какое применение у big data в маркетинге и в бизнесе?

  1. Обычные базы данных не могут хранить и обрабатывать (я сейчас говорю даже не про аналитику, а просто хранение и обработку) огромного количества информации.

    Биг дата же решает эту главную задачу. Успешно хранит и управляет информацией с большим объемом;

  2. Структурирует сведения, приходящие из различных источников (видео, изображений, аудио и текстовых документов), в один единый, понятный и удобоваримый вид;
  3. Формирование аналитики и создание точных прогнозов на основании структурированной и обработанной информации.

Это сложно. Если говорить просто, то любой маркетолог, который понимает, что если изучить большой объем информации (о Вас, Вашей компании, Ваших конкурентах, Вашей отрасли), то можно получить очень приличные результаты:

  • Полное понимание Вашей компании и Вашего бизнеса со стороны цифр;
  • Изучить своих конкурентов. А это, в свою очередь, даст возможность вырваться вперед за счет преобладания над ними;
  • Узнать новую информацию о своих клиентах.

И именно потому что технология big data дает следующие результаты, все с ней и носятся.

Пытаются прикрутить это дело в свою компанию, чтобы получить увеличение продаж и уменьшение издержек. А если конкретно, то:

  1. Увеличение кросс продаж и дополнительных продаж за счет лучшего знания предпочтений клиентов;
  2. Поиск популярных товаров и причин почему их покупают (и наоборот);
  3. Усовершенствование продукта или услуги;
  4. Улучшение уровня обслуживания;
  5. Повышение лояльности и клиентоориентированности;
  6. Предупреждение мошенничества (больше актуально для банковской сферы);
  7. Снижение лишних расходов.

Самый распространенный пример, который приводится во всех источниках – это, конечно ж, компания Apple, которая собирает данные о своих пользователях (телефон, часы, компьютер).

Именно из-за наличия эко-системы корпорация столько знает о своих пользователях и в дальнейшем использует это для получения прибыли.

Эти и другие примеры использования Вы можете прочитать в любой другой статье кроме этой.

Идём в будущее

Я же Вам расскажу о другом проекте. Вернее о человеке, который строит будущее, используя big data решения.

Это Илон Маск и его компания Tesla. Его главная мечта – сделать автомобили автономными, то есть Вы садитесь за руль, включаете автопилот от Москвы до Владивостока и… засыпаете, потому что Вам совершенно не нужно управлять автомобилем, ведь он все сделает сам.

Казалось бы, фантастика? Но нет! Просто Илон поступил гораздо мудрее, чем Google, которые управляют автомобилями с помощью десятков спутников. И пошел другим путем:

  1. В каждый продаваемый автомобиль ставится компьютер, который собирают всю информацию.

    Всю – это значит вообще всю. О водителе, стиле его вождения, дорогах вокруг, движении других автомобилей. Объем таких данных доходит до 20-30 ГБ в час;

  2. Далее эта информация по спутниковой связи передается в центральный компьютер, который занимается обработкой этих данных;
  3. На основе данных big data, которые обрабатывает данный компьютер, строится модель беспилотного автомобиля.

К слову, если у Google дела идут довольно скверно и их автомобили все время попадают в аварии, то у Маска, за счет того что идет работа с big data, дела обстоят гораздо лучше, ведь тестовые модели показывают очень неплохие результаты.

Но… Это все из экономики. Что мы все о прибыли, да о прибыли? Многое, что может решить биг дата, совершенно не связано с заработком и деньгами.

Статистика Google, как раз таки основанная на big data, показывает интересную вещь.

Перед тем как медики объявляют о начале эпидемии заболевания в каком-то регионе, в этом регионе существенно возрастает количество поисковых запросов о лечении данного заболевания.

Таким образом, правильное изучение данных и их анализ может сформировать прогнозы и предсказать начало эпидемии (и, соответственно, ее предотвращение) гораздо быстрее, чем заключение официальных органов и их действия.

Применение в России

Однако, Россия как всегда немного “притормаживает”. Так само определение big data в России появилось не более, чем 5 лет назад (я сейчас именно про обычные компании).

И это не смотря на то, что это один из самых быстрорастущих рынков в мире (наркотики и оружие нервно курят в сторонке), ведь ежегодно рынок программного обеспечения для сбора и анализа big data прирастает на 32%.

Чтобы охарактеризовать рынок big data в России, мне вспоминается одна старая шутка. Биг дата это как секс до 18 лет.

Все об этом говорят, вокруг этого много шумихи и мало реальных действий, и всем стыдно признаться, что сами-то они этим не занимаются. И правда, вокруг этого много шумихи, но мало реальных действий.

Хотя известная исследовательская компания Gartner уже в 2015 году объявила, что биг дата это уже не возрастающий тренд (как кстати и искусственный интеллект ), а вполне самостоятельные инструменты для анализа и развития передовых технологий.

Наиболее активные ниши, где применяется big data в России, это банки/страхование (недаром я начал статью с главы Сбербанка), телекоммуникационная сфера, ритейл, недвижимость и… государственный сектор.

Для примера расскажу более подробно о паре секторов экономики, которые используют алгоритмы big data.

Банки

Начнём с банков и той информации, которую они собирают о нас и наших действиях. Для примера я взял ТОП-5 российских банков, которые активно инвестируют в big data:

  1. Сбербанк;
  2. Газпромбанк;
  3. ВТБ 24;
  4. Альфа Банк;
  5. Тинькофф банк.

Особенно приятно видеть в числе российских лидеров Альфа Банк. Как минимум, приятно осознавать, что банк, официальным партнером которого ты являешься, понимает необходимость внедрения новых маркетинговых инструментов в свою компанию.

Но примеры использования и удачного внедрения big data я хочу показать на банке, который мне нравится за нестандартный взгляд и поступки его основателя.

Я говорю про Тинькофф банк. Их главной задачей стояла разработка системы для анализа больших данных в режиме реального времени из-за разросшейся клиентской базы.

Результаты: время внутренних процессов сократилось минимум в 10 раз, а для некоторых – более, чем в 100 раз.

Ну и небольшое отвлечение. Знаете почему я заговорил про нестандартные выходки и поступки Олега Тинькова?

Просто на мой взгляд именно они помогли ему превратиться из бизнесмена средней руки, коих тысячи в России, в одного из самых известных и узнаваемых предпринимателей. В подтверждение посмотрите это необычное и интересное видео:

Недвижимость

В недвижимости все гораздо сложнее. И это именно тот пример, который я хочу Вам привести для понимания биг даты в пределах обычного бизнеса. Исходные данные:

  1. Большой объем текстовой документации;
  2. Открытые источники (частные спутники, передающие данные об изменениях земли);
  3. Огромный объем неконтролируемой информации в Интернет;
  4. Постоянные изменения в источниках и данных.

И на основе этого нужно подготовить и оценить стоимость земельного участка, например, под уральской деревней. У профессионала на это уйдет неделя.

У Российского общества оценщиков & РОСЭКО, собственно которые и внедрили себе анализ big data с помощью программного обеспечения, уйдет на это не более 30 минут неторопливой работы. Сравните, неделя и 30 минут. Колоссальная разница.

Ну и на закуску

Конечно же огромные объемы информации не могут храниться и обрабатываться на простых жестких дисках.

А программное обеспечение, которое структурирует и анализирует данные – это вообще интеллектуальная собственность и каждый раз авторская разработка. Однако, есть инструменты, на основе которых создается вся эта прелесть:

  • Hadoop & MapReduce;
  • NoSQL базы данных;
  • Инструменты класса Data Discovery.

Если честно, я не смогу Вам внятно объяснить чем они отличаются друг от друга, так как знакомству и работе с этими вещами учат в физико-математических институтах.

Зачем тогда я об этом заговорил, если не смогу объяснить? Помните во всех кино грабители заходят в любой банк и видят огромное число всяких железяк, подключенных к проводам?

То же самое и в биг дате. К примеру, вот модель, которая является на данный момент одним из самых лидеров на рынке.

Инструмент Биг дата

Стоимость в максимальной комплектации доходит до 27 миллионов рублей за стойку. Это, конечно, люксовая версия. Я это к тому, чтобы Вы заранее примерили создание big data в своем бизнесе.

Коротко о главном

Вы можете спросить зачем же вам, малому и среднему бизнесу работа с биг дата?

На это я отвечу Вам цитатой одного человека: “В ближайшее время клиентами будут востребованы компании, которые лучше понимают их поведение, привычки и максимально соответствуют им”.

Но давайте взглянем правде в глаза. Чтобы внедрить биг дата в малом бизнесе, это надо обладать не только большими бюджетами на разработку и внедрение софта, но и на содержание специалистов, хотя бы таких как аналитик big data и сисадмин.

И это я сейчас молчу о том, что у Вас должны быть такие данные для обработки.

Окей. Для малого бизнеса тема почти не применима. Но это не значит, что Вам нужно забыть все что прочитали выше.

Просто изучайте не свои данные, а результаты аналитики данных известных как зарубежных, так и российских компаний.

К примеру, розничная сеть Target с помощью аналитики по big data выяснила, что беременные женщины перед вторым триместром беременности (с 1-й по 12-ю неделю беременности) активно скупают НЕароматизированные средства.

Благодаря этим данным они отправляют им купоны со скидками на неароматизированные средства с ограниченным сроком действия.

А если Вы ну прям совсем небольшое кафе, к примеру? Да очень просто. Используйте приложение лояльности.

И через некоторое время и благодаря накопленной информации, Вы сможете не только предлагать клиентам релевантные их потребностям блюда, но и увидеть самые непродающиеся и самые маржинальные блюда буквально парой щелчков мышки.

Отсюда вывод. Внедрять биг дата малому бизнесу вряд ли стоит, а вот использовать результаты и наработки других компаний – обязательно.

По теме: Предиктивная аналитика: что это + примеры

Источник: https://in-scale.ru/blog/big-data

Военный юрист
Добавить комментарий