Термическая обработка металлов

6 Термическая обработка стали

Термическая обработка металлов

6Термическая обработка сталиКлассификация видов термообработки стали. Виды термической обработки стали (отжиг, отпуск, закалка).

Термическаяобработка (термообработка) стали—процесс изменения структуры стали,цветных металлов, сплавов при нагреваниии последующем охлаждении с определеннойскоростью.Термическаяобработка (термообработка) приводит ксущественным изменениям свойств стали,цветных металлов, сплавов. Химическийсостав металла не изменяется.

Отжиг

Отжиг —термическая обработка (термообработка)металла, при которой производитсянагревание металла, а затем медленноеохлаждение. Эта термообработка (т. е.отжиг) бывает разных видов (вид отжигазависит от температуры нагрева, скоростиохлаждения металла).

Закалка

Закалка —термическая обработка (термообработка)стали, сплавов, основанная наперекристаллизации стали (сплавов) принагреве до температуры выше критической;после достаточной выдержки при критическойтемпературе для завершения термическойобработки следует быстрое охлаждение.Закаленная сталь (сплав) имеет неравновеснуюструктуру, поэтому применим другой видтермообработки — отпуск.

Отпуск

Отпуск —термическая обработка (термообработка)стали, сплавов, проводимая после закалкидля уменьшения или снятия остаточныхнапряжений в стали и сплавах, повышающаявязкость, уменьшающая твердость ихрупкость металла.

Нормализация

Нормализация —термическая обработка (термообработка),схожая с отжигом. Различия этихтермообработок (нормализации и отжига)состоит в том, что при нормализациисталь охлаждается на воздухе (при отжиге— в печи).

Средиосновных видов термической обработкиследует отметить:

  • Отжиг (гомогенизация и нормализация). Целью является получение однородной зёренной микроструктуры и растворение включений. Последующее охлаждение является медленным, препятствующим образованию неравновесных структур типа мартенсита.
  • Закалку проводят с повышенной скоростью охлаждения с целью получения неравновесных структур типа мартенсита. Критическая скорость охлаждения, необходимая для закалки зависит от материала.
  • Отпуск необходим для снятия внутренних напряжений, внесённых при закалке. Материал становится более пластичным при некотором уменьшении прочности.
  • Дисперсионное твердение (старение). После проведения отжига проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц.

Термическаяобработка металлов разделяетсяна обработку черных металлов и цветных.Ниже пойдет речь конкретно обвидах термическойобработке стали.Также можете ознакомится с термическойобработкой цветных металлов.

Обжигание —нагревание стального изделия дотемпературы 840—900 °С, выдержка при этойтемпературе не меньше 2 ч и охлаждениевместе с печью. Этот метод применяютпри изготовлении из закаленного изделиядругого или же когда предыдущий закалбыл неудачный и инструмент нужно сновазакалить.

Если закаливать необожженныедетали, то в них могут возникнуть трещины,структура металла станет неоднородной,что резко ухудшает качество изделия.Мелкиедетали отжигают, нагревая на массивныхнакаленных стальных штабах, с которымиих охлаждают.

Иногда изделие нагреваютацетиленовой горелкой, которую постепенноотдаляют от изделия, чтобы изделиепостепенно остыло.

Нормализация –это нагревание стальных изделий ксоответствующей температуре и охлаждениюна воздухе.

Закаливание –нагревание углеродных или некоторыхлегированных сталей к определеннойтемпературе и быстрое ее охлаждение. Врезультате этого изменяется кристаллическаяструктура металла – он становитсятвердее и более антикоррозийным.Мало-углеродные стали с содержимымуглерода до 0,3 % не закаливаются. Взависимости от марки сталь нагреваютдо определенной температуре.

Так, сталиУ7, У7А нагревают до 770—790 °С; У8-У13А — до760—780; Р9-Р18 К5-Ф2 – до 1235—1280 °С. Принагревании выше этой температуры стальтеряет свои свойства «Пережиг» —непоправимый брак. Это также касаетсяотжига и отпускания.

В небольшихмастерских или в домашних условияхтемпературу определяют за цветомразжаривания (в затененном месте),которое приобретает изделие во времянагревания:

Цвет.Температура, °СТемно-коричневый……….530-580Коричнево-красный……..580-650Темно-красный……………650-730Темно-вишневый…………730-770Вишнево-красный………..770-800Светло-вишневый……….800-830Светло-красный …………830-900Оранжевый………………..900-1050Темно-желтый…………..1050-1150Светло-желтый………….1150-1250Светло-белый …………….1250-1350

Мелкиеизделия, для того чтоб не пережечь, лучшенагревать на предварительно нагретойметаллической подставке (например,штабе). Температура нагревания равнотемпературе нагревания изделия. Быстроеохлаждение приводит к твердому закалу,вследствие чего могут возникнуть большиевнутренние напряжения и даже трещины.

Медленное охлаждение может не датьнужного по твердости закала Охлаждающимисредами могут быть вода (обычнойтемпературы или нагретая до температуре50-50 °С), водные растворы, масло и воздух.Кухонная соль, едкий натр или селитра,которые добавляют к охладителям, ускоряютохлаждение.

Для уменьшения скоростиохлаждения к воде добавляют раствормыла, масляную эмульсию, жидкое стекло,известковое молоко и т.п.. Чрезмернобыстрое охлаждение водой часто приводитк дефектам изделия (внутренние напряжения,трещины, деформация), а повышениетемпературы воды уменьшает ее закальныесвойства.

Поэтому при последовательномзакале нескольких деталей, чтобы ониимели одинаковую закалку, воду частозаменяют или используют большойсосуд.Равномерно и довольнобыстро сталь охлаждаетсяв 8-12 %-ном водном растворе кухонной солиили едкого натра при температуре 20 °С.

Некоторые стали для лучшего закалаохлаждают в 30 %-ном растворе едкогонатра. Как охлаждающую среду можноприменять расплавленные соли калиевойили натриевой селитры. Нагревание маслак 60-90 °С не уменьшает скорости охлаждения,т.е. не влияет на его закаливальныесвойства.

Охлаждающей средой для сталейможет быть воздух (для тонких деталей)или воздух под давлением (от вентилятора,компрессора). Некоторые плоские детали(ножи) из нержавеющий стали охлаждаютмежду двумя металлическими штабами.

Отпускание —нагревание деталей к определеннойтемпературе, выдерживанию при этойтемпературе и быстрое охлаждение. Егоприменяют после охлаждения детали впроцессе закаливания, чтобы уменьшитьхрупкость и частично твердость.

Естьтри вида отпускания: низкое, среднее ивысокое соответственно в интервалетемператур до 350 °С, 350—500 и 500—680 °С.Наиболее распространенное низкоеотпускание. Нагревание до 170 °С толькоснимает внутренние напряжения, но неизменяет твердости стали.

Температурунагревания при отпускании определяютспециальным термометром, а если егонет, то за цветами побежалости, т.е.цветами окислительной пленки, котораявозникает на зачищенной поверхностиизделия во время нагревания:

Цвет.Температура, °ССветло-соломенный……..200Светло-желтый ……………225Соломенно-желтый……..240Коричнево-желтый………255Красно-коричневый……..265Пурпурно-красный ………275Фиолетовый………………..285Синий …………………………295Светло-синий……………..315Серый (морская вода) ….330

Послепоявления желательного цвета в процессенагревания, деталь охлаждают. Улегированных сталей цвета побежалостипоявляются при температурах на 12-17 °Сниже от приведенных.

Не имея достаточногоопыта, нагревать закаленные изделиядля отпускания лучше всего нарасплавленном свинце, олове, цинка (дляпружин) или в расплавленной смеси(поровну) калиевой и натриевой селитры.Это гарантирует быстрое и равномерноенагревания и его постоянную температуру.

Можно отпускание соединить с охлаждением.Для этого нагретый рабочий конецинструмента погружают во время закаливанияна 20-25 мм в воду и держат, пока металл непотемнеет. Потом инструмент вынимаютиз воды, быстро очищают от охлажденнойчасти окалину напильником или кускомшлифовального круга.

Как только появится,нужен цвет побежалости, инструментпогружают в воду сначала наполовину, апотом полностью и держат до охлаждения.

Источник: https://StudFiles.net/preview/1730219/

Применение термической обработки стали: основные виды, плюсы и минусы

Термическая обработка металлов

Термообработка металла является важной частью производственного процесса в цветной и чёрной металлургии. После этой процедуры материалы приобретают необходимые характеристики. Термообработку использовали довольно давно, но она была несовершенна. Современные методы позволяют достичь лучших результатов с меньшими затратами, и снизить стоимость.

Для придания нужных свойств металлической детали она подвергается термической обработке. Во время этого процесса происходит структурное изменение материала.

Металлические изделия, используемые в хозяйстве, должны быть устойчивыми к внешнему воздействию. Чтобы этого достичь, металл необходимо усилить при помощи воздействия высокой температуры. Такая обработка меняет форму кристаллической решётки, минимизирует внутреннее напряжение и улучшает его свойства.

Виды термической обработки стали

Термообработка стали сводится к трём этапам: нагреву, выдержке и быстрому охлаждению. Существует несколько видов этого процесса, но основные этапы у них остаются одинаковыми.

Выделяют такие виды термической обработки:

  • Техническая (отпуск, закалка, криогенная обработка, старение).
  • Термомеханическая, при которой используют не только высокую температуру, но и физическое воздействие на металл.
  • Химико-термическая включает в себя термическую обработку металла с последующим воздействием на поверхность азотом, хромом или углеродом.

Криогенная обработка

Изменения структуры металла можно добиться не только высокой температурой, но и низкой. Обработка сплава при температуре ниже 0 °C широко применяется в разных отраслях производства. Процесс происходит при температуре 195 °C.

Плюсы криогенной обработки:

  • Снижает количество аустенита, что придаёт устойчивость размерам деталей.
  • Не требует последующего отпуска, что сокращает производственный цикл.
  • После такой обработки детали лучше поддаются шлифовке и полировке.

Химико-термическая обработка

Химико-термическая обработка включает в себя не только воздействие с помощью высокой температуры, но и химическое. Результатом этой процедуры является повышенная прочность и износостойкость металла, а также придание огнестойкости и кислотоустойчивости.

Различают такие виды обработки:

  • Цементация.
  • Азотирование.
  • Нитроцементация.
  • Борирование.

Цементация стали — представляет собой процесс дополнительной обработки металла углеродом перед закалкой и отпуском. После проведения процедуры повышается выносливость изделия при кручении и изгибе.

Перед началом цементации производится тщательное очищение поверхности, после чего её покрывают специальными составами. Процедуру производят после полного высыхания поверхности.

Различают несколько видов цементации: жидкая, твёрдая, газовая. При первом виде используют специальную печь-ванную, в которую засыпают 75% соды, 10% карбида кремния, 15% хлористого натрия. После чего изделие погружают в ёмкость. Процесс протекает в течение 2 часов при температуре 850 °C.

Твёрдую цементацию удобно выполнять в домашней мастерской. Для неё используют специальную пасту на основе кальцинированной соды, сажи, щавелево-кислого натрия и воды. Полученный состав наносят на поверхность и ждут высыхания. После этого изделие помещают в печь на 2 часа при температуре в 900 °C.

При газовой цементации используют смеси газов, содержащие метан. Процедура происходит в специальной камере при температуре в 900 °C.

Азотирование стали — процесс насыщения поверхности металла азотом при помощи нагрева до 650 °C в аммиачной атмосфере. После обработки сплав увеличивает свою твёрдость, а также приобретает сопротивление к коррозии.

Азотирование, в отличие от цементации, позволяет сохранить высокую прочность при больших температурах. А также изделия не коробятся при охлаждении.

Азотирование металла широко применяется в промышленности для придания изделию износостойкости, увеличения твёрдости и защиты от коррозии.

Нитроцементация стали заключается в обработке поверхности углеродом и азотом при высокой температуре с дальнейшей закалкой и отпуском. Процедура может осуществляться при температуре 850 °C в газовой среде. Нитроцементацию используют для инструментальных сталей.

При борировании стали на поверхность металла наносят слой бора. Процедура происходит при температуре 910 °C. Такая обработка используется для повышения стойкости штампового и бурового инструментов.

Термомеханическая обработка

При использовании этого метода применяют высокую температуру и пластическую деформацию. Различают такие виды термомеханической обработки:

  • Высокотемпературная.
  • Низкотемпературная.
  • Предварительная.

При высокотемпературной обработке деформация металла происходит после разогрева. Сплав подогревают выше температуры рекристаллизации. После чего производится закалка с отпуском.

Высокотемпературная обработка металла:

  • Повышает вязкость.
  • Устраняет отпускную хрупкость.

Такой обработке подвергают конструкционные, инструментальные, углеродистые, пружинные, легированные стали.

При низкотемпературной обработке заготовку после охлаждения выдерживают при температуре ниже значения рекристаллизации и выше мартенситного превращения. На этом этапе делают пластическую деформацию. Такая обработка не даёт устойчивости металлу при отпуске, а для её осуществления необходимо мощное оборудование.

Для осуществления термомеханической обработки необходимо применять специальные приспособления для давления, нагрева и охлаждения заготовки.

Цветные металлы отличаются по своим свойствам друг от друга, поэтому для них применяют свои виды термообработки. Для выравнивания химического состава меди её подвергают рекристаллизационному отжигу. Латунь обрабатывают при низкой температуре (200 °C). Бронзу подвергают отжигу при температуре 550 °C. Магний закаляют, отжигают и подвергают старению, алюминий подвергают похожей обработке.

В чёрной и цветной металлургии широко применяются разные виды термической обработки металлов. Их используют для получения нужных свойств у сплавов, а также экономии средств. Для каждой процедуры и металла подбираются свои значения температуры.

Источник: https://tokar.guru/metally/stal/termicheskaya-obrabotka-stali-opisanie-vidy.html

Разновидности термообработки стали и металлов

Термическая обработка металлов

Термообработка — основополагающий химический процесс, проводимый при работе со сплавами. В черной и цветной металлургии методика берется за основу и имеет огромное количество различных вариаций.

От правильного проведения операции зависят химические, технические и механические свойства металла.

Все виды термообработки стали подразделяются на определённые группы, что позволяет подбирать рациональные вариации.

Основные виды термической обработки

На промышленных предприятиях все процессы автоматизированы и человек принимает в них лишь косвенное участие. Все технологии практически идентичные, но имеют отличия по условиям температуры и другим факторам.

В первую очередь сплав нагревается до определённой температуры, далее его выдерживают в этих температурных режимах. На последнем этапе происходит моментальное охлаждение.

Таким образом, термообработанная сталь будет иметь уникальные технические характеристики. Основные типы технологий:

  1. Термическое воздействие включает в себя закалку, старение, отпуск, криогенный нагрев.
  2. Термомеханические методики. Сопровождаются не только нагревом, но и механическими воздействиями.
  3. Термохимические технологии. После воздействия температурой происходит обработка различными типами жидкостей или газов, что может упрочнять сплав.

Любой способ подразумевает под собой получение требуемых условий, поэтому в случае возникновения сложностей вторичная обработка будет неприемлемой. Каждая технология по-своему уникальна, но при этом основывается на нагревании металлов.

Поэтому требуется более основательно разобраться с различиями и другими факторами. Это позволит получить более конкретную информацию обо всех интересующих аспектах.

Отжиг металлов в печи

Стандартная методика, при которой заготовки отправляют в печь и нагревают. В дальнейшем остывание происходит не в отдельных камерах, а в той же печи.

Таким образом, начинается естественный процесс остывания за счет температуры окружающей среды. Если рассматривать виды термообработки металлов, то представленная технология — одна из самых простых.

Технология позволяет получить следующие свойства:

  1. Уменьшается твердость, в дальнейшем легко перерабатывать сплавы.
  2. Повышается зернистость структуры.
  3. Исчезают неоднородные сегменты.
  4. Исчезает внутреннее напряжение.

В настоящее время представленная технология реализуется в нескольких разнообразных вариациях. Как указывает технологический справочник, для различных нужд создаются оптимальные условия.

На промышленных предприятиях данные работы должны проводиться в специальных печах. Сегодня отжиг стальных заготовок применяется для получения высококачественной стали.

Такие методики очень важны для промышленности и развития индустрии в этом сегменте.

Технология закалки

Один из самых распространённых методов термической обработки — это закалка. Технология представляет собой термические манипуляции с металлами и нагрев их до критических температур.

Результатом технологии становится повышение пластичности и прочности сплавов. Отличием закалки от отжига является довольно быстрое охлаждение. Для этих целей применяются ванны с водой, что в значительной степени ускоряет процессы.

С технической точки зрения это уникальная методика. Существует несколько основных разновидностей закалки:

  1. Технология, где используют только один тип жидкости для охлаждения.
  2. Прерывистая методика. Сначала металл нагревают до критического показателя и опускают в воду. После остывания до температуры 300 градусов оставляют на воздухе или в масле.
  3. Ступенчатая. В этом случае применяется методика охлаждения в воде, потом в специальных солях и на последнем этапе оставляют остывать на воздухе. Таким образом, на каждом этапе металл приобретает более уникальные технические характеристики.
  4. Изотермическая — практически идентична ступенчатой закалке.
  5. Частичная закалка. Охлаждение происходит только по краям металла, в середине он остается горячим. Такая методика применяется при изготовлении отбойных инструментов, так как сплав получается вязким в середине и прочным по краям.

Технология закалки очень часто используется в кузницах как основной метод термообработки. Его эффективность подтверждается многими годами использования и указывает на невероятные преимущества. В настоящее время на каждом этапе технологического процесса нужно контролировать показатели. Это позволит получить металл с требуемыми характеристиками.

Отпуск и старение сплавов

Если нет информации о том, какая обработка стальных изделий характеризуется улучшением технических показателей, то можно выбрать любую методику. Все связано с тем, что каждая технология имеет определённые преимущества и достоинства.

Отпуск — это методика, используемая на последнем этапе обработки металлов, таким образом, за счет нее придаются различные физические свойства конечного формата. Для этого металлическую деталь нагревают до температуры, которая должна быть ниже критической, и проводят охлаждения.

В настоящее время известно несколько основных типов отпуска:

  • высокий;
  • средний;
  • низкий.

Процесс старения применяется для обработки чугуна и различных типов цветных металлов. Технология очень распространена, так как позволяет увеличивать пределы текучести и прочности металлов. Проводят старение после отжига при нормальной температуре, это позволяет добиться требуемого эффекта без каких-либо сторонних технологий.

Особенность любого типа термической обработки заключается в профессионализме исполнителей. У каждого специалиста, работающего с металлом, есть свои секреты, которые он применяет на практике.

Удается получать металл с уникальными техническими характеристиками. В заводских условиях нужно придерживаться технического регламента, поэтому металл всегда одинакового формата, это иногда является большой проблемой.

Технические стандарты остаются постоянными.

Криогенное воздействие

В настоящее время техника и технология постоянно развиваются, появляются новые варианты воздействий на сплавы. Сегодня можно использовать не только высокие температуры, но и низкие. То есть холод также улучшает качество материалов.

Существуют специальные криогенные камеры, в которых и проводятся технологические процедуры. Температура, при которой находятся детали и заготовки, равна -196 градусов Цельсия.

Преимущество технологии заключается в том, что не требуется повторная обработка.

Конечно же, технология не всегда бывает подходящей и имеет множество различных нюансов. Рекомендуется пользоваться технологическими регламентами, что позволит в значительной степени повысить качество продукта. Также при такой обработке в значительной степени снижаются затраты. Достаточно использовать холодильник, при высоких температурах нужны сторонние ресурсы на разогрев печи и так далее.

Термомеханическое воздействие

Из всех перечисленных технологий представленная методика в промышленных масштабах используется уже давно. Суть заключается в предварительном нагревании металла до пластичного состояния и в дальнейшем механическом воздействии. Термомеханическая обработка может быть нескольких видов:

  1. Низкотемпературная обработка. Ее отличие заключается в том, что металл нагревается до аустенитного состояния. Технология включает в себя пластическую деформацию, закалку и отпуск. Все делается в соответствии с техническим регламентом.
  2. Высокотемпературная обработка. Металл нагревается до мартенситного состояния, проводится пластическая деформация.
  3. Предварительная обработка.

Выбрать нужный метод позволяют практика и те цели, которые вы преследуете.

С технологической точки зрения каждый метод любого типа термической обработки подходит только для определённых металлов и сплавов. Именно этим фактором обусловлено разнообразие.

То есть ни в коем случае нельзя подвергать сталь воздействию определенного типа, если оно не подходит. Это приведет к ухудшению качества материалов.

Химическая обработка

Химические реакции с металлами в совокупности с термическими воздействием приводят к повышению износостойкости, устойчивости к воздействию кислот и щелочей. В настоящее время существуют специализированные промышленные условия для проведения большого количества процессов. Важно различать методики и использовать их в нужный момент. Типы термохимических реакций:

  1. Цианирование — металл подвергают одновременному воздействию углерода и азота. Основа методики заключается в насыщении сплава данными элементами.
  2. Азотирование — технология, позволяющая повысить коррозионную устойчивость металлов до максимальных показателей, также повышается прочность. Для этого сплавы погружают в азотную среду.
  3. Диффузионная металлизация — очень сложная технология, но схожая с предыдущими. Благодаря ее проведению металл становится более прочным, износостойким и не подвергается воздействию агрессивных средств. Для этого поверхность сплавов обрабатывают бромом, хромом, алюминием.
  4. Цементация — методика, повышающая прочность металла. Для этого используют углерод, который в газовом состоянии непрерывно подается на металл в печи.

В каждом отдельном случае важно соблюдать все правила технологического сопровождения. Сплав при неправильном воздействии может потерять свои технические характеристики и будет отправлен на дополнительную переплавку. В таких ситуациях используются контрольно-измерительные приборы, исключающие нарушение технологии.

Цветные сплавы

Каждый отдельный цветной металл или сплав отличается от других физическими и химическими свойствами, что не скажешь о черных металлах.

Поэтому рекомендуется для каждого отдельного случая подбирать свои методики, чтобы не потерять качество.

Рекристализационный отжиг проводится для меди, что в значительной степени повышает качество, и происходит термоупрочнение. Различают такие особенности:

  1. Латунь ни в коем случае нельзя сильно нагревать, предел — 250−300 градусов Цельсия. При неправильной обработке либо высоких температурах происходит растрескивание структуры.
  2. Бронзу нужно гомогенизировать и в последующем нагревать до 600 градусов Цельсия.
  3. Магний можно обрабатывать различными методами: старение, отжиг и так далее.
  4. Титановые сплавы можно закаливать, отжигать, подвергать старению, цементации.

В настоящее время существуют специальные справочники и технические пособия, позволяющие подбирать соответствующие методики для повышения технических свойств металлов.

Специалисты, работающие на промышленных предприятиях, действуют по заранее заложенным планам и техническим документам.

Таким образом, каждая методика по-своему уникальна и делает металлы и сплавы более качественными и подходящими для технических и промышленных нужд.

Промышленные компании применяют практически все существующие методы, что дает возможность получить сплавы различного формата. Очень важно придерживаться регламентов и стандартов ГОСТ. Каждая рассмотренная термическая обработка имеет свои стандарты и технические нормативы. Любое отклонение приведет к получению некачественного материала, и, следовательно, будет брак.

Источник: https://obrabotkametalla.info/stal/raznovidnosti-termoobrabotki-metallov

Термическая обработка стали

Термическая обработка металлов

Термическая обработка стали позволяет придать изделиям, деталям и заготовкам требуемые качества и характеристики. В зависимости от того, на каком этапе в технологическом процессе изготовления проводилась термическая обработка, у заготовок повышается обрабатываемость, с деталей снимаются остаточные напряжения, а у деталей повышаются эксплуатационные качества.

Технология термической обработки стали – это совокупность процессов: нагревания, выдерживания и охлаждения с целью изменения внутренней структуры металла или сплава. При этом химический состав не изменяется.

Так, молекулярная решетка углеродистой стали при температуре не более 910°С представляет из себя куб объемно-центрированный. При нагревании свыше 910°С до 1400°С решетка принимает форму гране-центрированного куба. Дальнейший нагрев превращает куб в объемно-центрированный.

Термическая обработка стали

Сущность термической обработки сталей – это изменение размера зерна внутренней структуры стали.

Строгое соблюдение температурного режима, времени и скорости на всех этапах, которые напрямую зависят от количества углерода, легирующих элементов и примесей, снижающих качество материала.

Во время нагрева происходят структурные изменения, которые при охлаждении протекают в обратной последовательности. На рисунке видно, какие превращения происходят во время термической обработки.

Изменение структуры металла при термообработке

Назначение термической обработки

Термическая обработка стали проводится при температурах, приближенных к критическим точкам . Здесь происходит:

  • вторичная кристаллизация сплава;
  • переход гамма железа в состояние альфа железа;
  • переход крупных частиц в пластинки.

Внутренняя структура двухфазной смеси напрямую влияет на эксплуатационные качества и легкость обработки.

Образование структур в зависимости от интенсивности охлаждения

Основное назначение термической обработки — это придание сталям:

  • В готовых изделиях:
    1. прочности;
    2. износостойкости;
    3. коррозионностойкость;
    4. термостойкости.
  • В заготовках:
    1. снятие внутренних напряжений после
      • литья;
      • штамповки (горячей, холодной);
      • глубокой вытяжки;
    2. увеличение пластичности;
    3. облегчение обработки резанием.

Термическая обработка применяется к следующим типам сталей:

  1. Углеродистым и легированным.
  2. С различным содержанием углерода, от низкоуглеродистых 0,25% до высокоуглеродистых 0,7%.
  3. Конструкционным, специальным, инструментальным.
  4. Любого качества.

Классификация и виды термообработки

Основополагающими параметрами, влияющими на качество термообработки являются:

  • время нагревания (скорость);
  • температура нагревания;
  • длительность выдерживания при заданной температуре;
  • время охлаждения (интенсивность).

Изменяя данные режимы можно получить несколько видов термообработки.

Виды термической обработки стали:

  • Отжиг
    1. I – рода:
      • гомогенизация;
      • рекристаллизация;
      • изотермический;
      • снятие внутренних и остаточных напряжений;
    2. II – рода:
  • Закалка;
  • Отпуск:

Температура нагрева стали при термообработке

2. Средний отпуск

Для среднего отпуска преобразование мартенсита в тростит. Твердость снижается до 400 НВ. Вязкость возрастает. Данному отпуску подвергаются детали, работающие со значительными упругими нагрузками. Режимы обработки:

  • нагревание до температуры – от 340°С, но не выше 500°С;
  • охлаждение – воздух.

3. Высокий отпуск

При высоком отпуске кристаллизуется сорбит, который ликвидирует напряжения в кристаллической решетке. Изготавливаются ответственные детали, обладающие прочностью, пластичностью, вязкостью.

Отжиг стали

Режимы обработки:

Нагревание до температуры – от 450°С, но не выше 650°С.

1. Гомогенизация

Гомогенизация,  по-иному отжиг диффузионный, восстанавливает неоднородную ликвацию отливок. Режимы обработки:

  • нагревание до температуры – от 1000°С, но не выше 1150°С;
  • выдержка – 8-15 часов;
  • охлаждение:
    • печь – до 8 часов, снижение температуры до 800°С;
    • воздух.

2. Рекристаллизация

Рекристаллизация, по-иному низкий отжиг, используется после обработки пластическим деформированием, которое вызывает упрочнение за счет изменения формы зерна (наклеп). Режимы обработки:

  • нагревание до температуры – выше точки кристаллизации на 100°С-200°С;
  • выдерживание — ½ — 2 часа;
  • остывание – медленное.

3. Изотермический отжиг

Изотермическому отжигу подвергаются легированные стали, для того чтобы произошел распад аустенита. Режимы термообработки:

  • нагревание до температуры – на 20°С — 30°С выше точки ;
  • выдерживание;
  • остывание:
    • быстрое – не ниже 630°С;
    • медленное – при положительных температурах.

4. Отжиг для устранения напряжений

Снятие внутренних и остаточных напряжений отжигом используется после сварочных работ, литья, механической обработки. С наложением рабочих нагрузок детали подвергаются разрушению. Режимы обработки:

  • нагревание до температуры – 727°С;
  • выдерживание – до 20 часов при температуре 600°С — 700°С;
  • остывание — медленное.

5. Отжиг полный

Отжиг полный позволяет получить внутреннюю структуру с мелким зерном, в составе которой феррит с перлитом. Полный отжиг используют для литых, кованных и штампованных заготовок, которые будут в дальнейшем обрабатываться резанием и подвергаться закалке.

Полный отжиг стали

Режимы обработки:

  • температура нагрева – на 30°С-50°С выше точки ;
  • выдержка;
  • охлаждение до 500°С:
    • сталь углеродистая – снижение температуры за час не более 150°С;
    • сталь легированная – снижение температуры за час не более 50°С.

6. Неполный отжиг

При неполном отжиге пластинчатый или грубый перлит преобразуется в ферритно-цементитную зернистую структуру, что необходимо для швов, полученных электродуговой сваркой, а также инструментальные стали и стальные детали, подвергшиеся таким методам обработки, температура которых не провоцирует рост зерна внутренней структуры.

Режимы обработки:

  • нагревание до температуры – выше точки  или , выше 700°С на 40°С — 50°С;
  • выдерживание – порядка 20 часов;
  • охлаждение — медленное.

Преимущества термообработки

Термообработка стали – это технологический процесс, который стал обязательным этапом получения комплектов деталей из стали и сплавов с заданными качествами. Этого позволяет добиться большое разнообразие режимов и способов термического воздействия. Термообработку используют не только применительно к сталям, но и к цветным металлам и сплавам на их основе.

Стали без термообработки используются лишь для возведения металлоконструкций и изготовления неответственных деталей, срок службы которых невелик. К ним не предъявляются дополнительные требования. Повседневная же эксплуатация наоборот диктует ужесточение требований, именно поэтому применение термообработки предпочтительно.

В термически необработанных сталях абразивный износ высок и пропорционален собственной твердости, которая зависит от состава химических элементов. Так, незакаленные матрицы штампов хорошо сочетаются при работе с калеными пуансонами.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://StankiExpert.ru/spravochnik/materialovedenie/termicheskaya-obrabotka-stali.html

Военный юрист
Добавить комментарий